Wikipedia

2-Aminoisobutyric acid

2-Aminoisobutyric acid
2-aminoisobutyric acid.svg
2-methylalanine molecule
Names
IUPAC name
2-Amino-2-methylpropanoic acid
Other names
α-Aminoisobutyric acid
2-Methylalanine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.000.495 Edit this at Wikidata
EC Number
  • 200-544-0
KEGG
UNII
CompTox Dashboard (EPA)
Properties
C4H9NO2
Molar mass 103.12 g/mol
Appearance white crystalline powder
Density 1.09 g/mL
Boiling point 204.4 °C (399.9 °F; 477.5 K)
soluble
Acidity (pKa)
  • 2.36 (carboxyl; H2O)
  • 10.21 (amino; H2O)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Aminoisobutyric acid, or α-aminoisobutyric acid (AIB) or α-methylalanine or 2-methylalanine, is the non-proteinogenic amino acid with the structural formula H2N-C(CH3)2-COOH. It is rare in nature only being found in meteorites,[2] and some antibiotics of fungal origin, such as alamethicin and some lantibiotics.

Synthesis

In the laboratory, 2-aminoisobutyric acid may be prepared from acetone cyanohydrin, by reaction with ammonia followed by hydrolysis.[3] Industrial scale synthesis can be achieved by the selective hydroamination of methacrylic acid.

Biological activity

2-Aminoisobutyric acid is not one of the proteinogenic amino acids and is rather rare in nature (cf. non-proteinogenic amino acids). It is a strong helix inducer in peptides due to Thorpe–Ingold effect of its gem-dimethyl group.[4] Oligomers of AIB form 310 helices. 3-Aminoisobutyric acid, or BAIBA, is found as a normal metabolite of skeletal muscle in 2014. The plasma concentrations are increased in human by exercise. The production is likely a result of enhanced mitochondrial activity as the increase is also observed in the muscle of PGC-1a overexpression mice. BAIBA is proposed as protective factor against metabolic disorder since it can induce brown fat function.[5]

Ribosomal incorporation into peptides

Several reports have confirmed the compatibility of 2-aminoisobutyric acid with ribosomal elongation of peptide synthesis. Katoh et al. used flexizymes[6] and an engineered a tRNA body to enhance the affinity of aminoacylated AIB-tRNA species to elongation factor-P.[7] The result was an increased incorporation of AIB into peptides in a cell free translation system. Iqbal et al.. used an alternative approach of creating an editing deficient valine tRNA-ligase to synthesize aminoacylated AIB-tRNAVal. The aminoacylated tRNA was subsequently used in a cell-free translation system to yield AIB-containing peptides.[8]

References

  1. ^ Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 5–88. ISBN 978-1498754286.
  2. ^ "Immune System of Humans, Other Mammals Could Struggle to Fight Extraterrestrial Microorganisms". Science News. 23 July 2020. Retrieved 24 July 2020.
  3. ^ Clarke, H. T.; Bean, H. J. (1931). "α-Aminoisobutyric acid". Organic Syntheses. 11: 4.; Collective Volume, 2, p. 29.
  4. ^ Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. (2001). "Control of peptide conformation by the Thorpe-Ingold effect (C alpha-tetrasubstitution)". Biopolymers. 60 (6): 396–419. doi:10.1002/1097-0282(2001)60:6<396::AID-BIP10184>3.0.CO;2-7. ISSN 0006-3525. PMID 12209474.
  5. ^ Roberts, LD; Boström, P; O'Sullivan, JF; Schinzel, RT; Lewis, GD; Dejam, A; Lee, YK; Palma, MJ; Calhoun, S; Georgiadi, A; Chen, MH; Ramachandran, VS; Larson, MG; Bouchard, C; Rankinen, T; Souza, AL; Clish, CB; Wang, TJ; Estall, JL; Soukas, AA; Cowan, CA; Spiegelman, BM; Gerszten, RE (7 January 2014). "β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors". Cell Metabolism. 19 (1): 96–108. doi:10.1016/j.cmet.2013.12.003. PMC 4017355. PMID 24411942.
  6. ^ Ohuchi, Masaki; Murakami, Hiroshi; Suga, Hiroaki (2007). "The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus". Current Opinion in Chemical Biology. 11 (5): 537–542. doi:10.1016/j.cbpa.2007.08.011. PMID 17884697.
  7. ^ Katoh, Takayuki; Iwane, Yoshihiko; Suga, Hiroaki (2017-12-15). "Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation". Nucleic Acids Research. 45 (22): 12601–12610. doi:10.1093/nar/gkx1129. ISSN 0305-1048. PMC 5728406. PMID 29155943.
  8. ^ Iqbal, Emil S.; Dods, Kara K.; Hartman, Matthew C. T. (2018). "Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase". Organic & Biomolecular Chemistry. 16 (7): 1073–1078. doi:10.1039/c7ob02931d. ISSN 1477-0539. PMC 5993425. PMID 29367962.
This article is copied from an article on Wikipedia® - the free encyclopedia created and edited by its online user community. The text was not checked or edited by anyone on our staff. Although the vast majority of Wikipedia® encyclopedia articles provide accurate and timely information, please do not assume the accuracy of any particular article. This article is distributed under the terms of GNU Free Documentation License.

Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.